ECON 216 - Exam 2 Formula Sheet - Spring 2023-Dr. Sara Esfahani

1 st and 2 nd moments of a continuous random variable

Combination Formula

$$
C_{n}^{N}=\binom{N}{n}=\frac{N!}{n!\times(N-n)!}
$$

$\underline{\text { Permutation Formula }}$

$$
P_{n}^{N}=\frac{N!}{(N-n)!}
$$

Probability

$$
\text { Probability }=\frac{\text { Number of favorable outcomes }}{\text { Total number of outcomes }}
$$

$\underline{\text { Probability of the Union of two Events }}$

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Conditional Probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Multiplication Law

$$
\begin{aligned}
& P(A \cap B)=P(A \mid B) \times P(B) \\
& P(A \cap B)=P(B \mid A) \times P(A)
\end{aligned}
$$

Independent Events

$$
\begin{aligned}
& P(A \mid B)=P(A) \\
& P(B \mid A)=P(B)
\end{aligned}
$$

$$
\begin{gathered}
E(x)=\mu=\int x f(x) d x \\
\operatorname{Var}(x)=\sigma^{2}=\int(x-\mu)^{2} f(x) d x
\end{gathered}
$$

Uniform Probability Distribution

$$
\begin{gathered}
f(x)= \begin{cases}\frac{1}{b-a} & \text { for } a \leq x \leq b \\
0 & \text { elsewhere }\end{cases} \\
F(c)=\operatorname{Prob}(x \leq c)=\frac{c-a}{b-a} \\
E(x)=\mu=\frac{a+b}{2} \\
\operatorname{Var}(x)=\sigma^{2}=\frac{(b-a)^{2}}{12}
\end{gathered}
$$

Normal Probability Distribution

$$
\begin{gathered}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \\
E(x)=\mu \\
\operatorname{Var}(x)=\sigma^{2}
\end{gathered}
$$

Converting to Standard Normal Random Variable

$$
z=\frac{x-\mu}{\sigma}
$$

